Home » 学术转发 » 名词 » 拉莫尔进动 Larmor precession

拉莫尔进动 Larmor precession

In physics, Larmor precession (named after Joseph Larmor) is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an external torque-exerting gravitational field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems.

In nuclear physics the g-factor of a given system includes the effect of the nucleon spins, their orbital angular momenta, and their couplings. Generally, the g-factors are very difficult to calculate for such many-body systems, but they have been measured to high precision for most nuclei. The Larmor frequency is important in NMR spectroscopy. The gyromagnetic ratios, which give the Larmor frequencies at a given magnetic field strength, have been measured and tabulated here.

Crucially, the Larmor frequency is independent of the polar angle between the applied magnetic field and the magnetic moment direction. This is what makes it a key concept in fields such as nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), since the precession rate does not depend on the spatial orientation of the spins.

参考资料:

https://en.wikipedia.org/wiki/Larmor_precession

https://zh.wikipedia.org/zh-cn/拉莫尔进动

10 次浏览
FavoriteLoading加入收藏

作者归档

文章分类

最近发布(原创文章+学术转发)

最近发布(其他转发+默认分类)