Home » 学术转发 » 名词 » 玻戈留玻夫变换 Bogoliubov transformation

玻戈留玻夫变换 Bogoliubov transformation

In theoretical physics, the Bogoliubov transformation, also known as the Bogoliubov–Valatin transformation, was independently developed in 1958 by Nikolay Bogolyubov and John George Valatin for finding solutions of BCS theory in a homogeneous system. The Bogoliubov transformation is an isomorphism of either the canonical commutation relation algebra or canonical anticommutation relation algebra. This induces an autoequivalence on the respective representations. The Bogoliubov transformation is often used to diagonalize Hamiltonians, which yields the stationary solutions of the corresponding Schrödinger equation. The Bogoliubov transformation is also important for understanding the Unruh effect, Hawking radiation, pairing effects in nuclear physics, and many other topics.

The Bogoliubov transformation is often used to diagonalize Hamiltonians, with a corresponding transformation of the state function. Operator eigenvalues calculated with the diagonalized Hamiltonian on the transformed state function thus are the same as before.

参考资料:

https://en.wikipedia.org/wiki/Bogoliubov_transformation

9 次浏览
FavoriteLoading加入收藏

作者归档

文章分类

最近发布(原创文章+学术转发)

最近发布(其他转发+默认分类)